EXERCISE 5 MODULAR FORMS 2019 DUE DATE: MAY 19, 2019

Exercise 1. Let $L \subset \mathbb{R}^{24}$ be an even, self-dual lattice in dimension 24 that has no vectors of norm $|\ell|^2 = 2$ (the Leech lattice is the unique example). Find the number of vectors of norm $|\ell|^2 = 4$.

Exercise 2. We defined the even self-dual (unimodular) lattices $E(8m) \subset \mathbb{R}^{8m}$ as the lattice generated by the vector $\delta = (\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2})$ and the lattice $F = \{x \in \mathbb{Z}^{8m} : \sum_{j=1}^{8m} x_j = 0 \mod 2\}.$

Show that for any $m \ge 2$, the vectors of norm $|\ell|^2 = 2$ in E(8m) are precisely the vectors $\pm e_i \pm e_k$, $1 \le i < k \le 8m$ where e_i are the standard basis vectors: $e_1 = (1, 0, \ldots, 0)$ etc.